Predicting In Vitro Rumen VFA Production Using CNCPS Carbohydrate Fractions with Multiple Linear Models and Artificial Neural Networks
نویسندگان
چکیده
The objectives of this trial were to develop multiple linear regression (MLR) models and three-layer Levenberg-Marquardt back propagation (BP3) neural network models using the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions as dietary variables for predicting in vitro rumen volatile fatty acid (VFA) production and further compare MLR and BP3 models. Two datasets were established for the trial, of which the first dataset containing 45 feed mixtures with concentrate/roughage ratios of 10∶90, 20∶80, 30∶70, 40∶60, and 50∶50 were used for establishing the models and the second dataset containing 10 feed mixtures with the same concentrate/roughage ratios with the first dataset were used for testing the models. The VFA production of feed samples was determined using an in vitro incubation technique. The CNCPS carbohydrate fractions (g), i.e. CA (sugars), CB1 (starch and pectin), CB2 (available cell wall) of feed samples were calculated based on chemical analysis. The performance of MLR models and BP3 models were compared using a paired t-test, the determination coefficient (R2) and the root mean square prediction error (RMSPE) between observed and predicted values. Statistical analysis indicated that VFA production (mmol) was significantly correlated with CNCPS carbohydrate fractions (g) CA, CB1, and CB2 in a multiple linear pattern. Compared with MLR models, BP3 models were more accurate in predicting acetate, propionate, and total VFA production while similar in predicting butyrate production. The trial indicated that both MLR and BP3 models were suitable for predicting in vitro rumen VFA production of feed mixtures using CNCPS carbohydrate fractions CA, CB1, and CB2 as input dietary variables while BP3 models showed greater accuracy for prediction.
منابع مشابه
Relationship between the Methane Production and the CNCPS Carbohydrate Fractions of Rations with Various Concentrate/roughage Ratios Evaluated Using In vitro Incubation Technique
The objective of the trial was to study the relationship between the methane (CH4) production and the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions of feeds for cattle and the suitability of CNCPS carbohydrate fractions as the dietary variables in modeling the CH4 production in rumen fermentation. Forty-five rations for cattle with the concentrate/roughage ratios of...
متن کاملMicrowave irradiation of whole soybeans in ruminant nutrition: Protein and carbohydrate metabolism in vitro and in situ
Whole soybeans serve as one of the main sources of protein in ruminant nutrition. Different processing methods have been employed for ruminal protein protection. The present study was conducted to determine the effects of microwave irradiation [900 W; 2, 4 and 6 min] on quality, ruminal degradability and estimated in vitro intestinal digestibility of availability soybean crude protein....
متن کاملDeveloping a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production
The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کامل